

Digital Etch for InGaSb p-Channel FinFETs with 10-nm Fin Width

Wenjie Lu and Jesús A. del Alamo

Massachusetts Institute of Technology CSW, May 30, 2018

Sponsors:

KIST, SRC, DTRA, Lam Research

Acknowledgment:

KIST, NRL, Sandia, MTL, SEBL

Outline

- Motivation
- InGaSb Digital Etch
- InGaSb p-channel FinFET
- Off-state Current
- Conclusions

Reported Mobility in InGaSb

del Alamo, Nature 2011

Reported Mobility in InGaSb

del Alamo, Nature 2011

Digital Etch: standard in InGaAs VNW/FinFET process

Digital Etch in InGaSb

Key: Water Damages Antimonides

Dip in DI water for 2 min

→ Must remove water

Lu, EDL 2017

Alcohol-based Treatment

After RIE

10% HCI:IPA 2 min

No sidewall damage

Lu, EDL 2017

Digital Etch in InGaSb

r (III-Sb) ↓ after 3 cycles r (III-As) > r (III-Sb)

Oxidation of GaSb

- In air:
 - $-Ga_2O_3$, Sb_2O_3
- In strong oxidation agents:
 - $-Ga_2O_3$, Sb_2O_3
 - -Sb₂O₅ (insoluble in common aqueous acid/alkali)

Must avoid formation of Sb₂O₅

Liu, JVST B. 2002

Experiments of InGaSb DE

Oxidation		Organic			
Oxide etch	UV ozone	H_2O_2	peroxides	O ₂ plasma	RT O ₂
H_2SO_4 :methanol	Damage	Damage	Damage	Damage	Damage
Citric acid:IPA	No etching	No etching	No etching	No etching	No etching
Acetic acid:IPA	No etching	No etching	No etching	No etching	No etching
HCI:IPA	No etching	Rate \rightarrow 0	Rate \rightarrow 0	Rate \rightarrow 0	2 nm/cycle

Best results: RT O₂ atmosphere + HCI:IPA

$RT O_2 + HCI:IPA$

- Stable etching rate
- Identical etch rate for InAs and antimonides

InGaSb p-Channel FinFETs

Heterostructure grown by KIST

InGaSb p-Channel FinFETs

G3 FinFET

3 Generations

- -G1: No sidewall treatment
- -G2: HCI:IPA treatment
- -G3: HCI:IPA + digital etch

Minimum $W_f = 10 \text{ nm}$

Lu, IEDM 2017

Minimum-size Devices

Lu, IEDM 2015

Lu, CSW 2017

Lu, IEDM 2017

Off-state Current

• G2: $W_f = 20 \text{ nm}$, $L_g = 100 \text{ nm}$

Presence of leakage paths outside the fins

Off-state Current

• G2:
$$V_{gt}$$
 = 0.6 V, V_{ds} = - 50 mV

Benchmark

 $g_m/W_f = 704 \ \mu S/\mu m$ at $W_f = 10 \ nm$

20

Conclusion

- Digital Etch
 - Alcohol-based HCl treatment
 - $-O_2$ for oxidation at RT
 - Compatible to InGaSb and InAs
- InGaSb p-Channel FinFETs
 - Minimum $W_f = 10 \text{ nm}$, $L_g = 20 \text{ nm}$
 - HCI:IPA and DE improves I_{off}
 - Record device performance

Off-state Current

10 min air exposure

- Buffer is damaged after multiple DE cycles
 - $AI_{0.93}Ga_{0.07}Sb$ is too reactive

